

Angiography-Based Quantitative Flow Ratio for Online Assessment of Coronary Stenosis: Italian experience in FAVOR II study

Andrea Maschera⁽¹⁾ Matteo Migliorini⁽²⁾

Emodinamica Aziendale, Ospedale dell'Angelo – Mestre (Venezia) – Italy

Cardiologia Interventistica Emodinamica ed Elettrofisiologia Azienda Ospedaliero-Universitaria di Ferrara -Ospedale S. Anna, Cona (Ferrara) – Italy

Palermo, 25 - 26 Maggio 2018

Università degli Studi di Ferrara

Disclosure

- Speaker's name: Andrea Maschera
- Nessun conflitto di interessa da dichiarare
 I do not have any potential conflicts of interest to report

Background - Coronary angiography

- Coronary angiography (CAG) represents the gold standard for the assessment of coronary artery disease (CAD)
- For the majority of interventions, CAG is the test used for clinical decision-making
- Limitations in complex clinical settings
- QCA IVUS OCT available

 Weak ability to predict the functional impact of atheroma on myocardium

ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur. Heart J. 34(38), 2013. Toth G, et al. Evolving concepts of angiogram: fractional flow reserve discordances in 4000 coronary stenoses. Eur Heart J 2014;35 :2831–2838

ESC/EACTS GUIDELINES

2014 ESC/EACTS Guidelines on myocardial revascularization

FFR --> Fractional Flow Reserve

Class IA recommendation has been granted to the use of FFR in the assessment of coronary stenosis before myocardial revascularization when previous non-invasive functional evaluation is unavailable

IVUS or OCT may be llb 404 or not conclusive в ove stent Ref. ^C Recommendations Class^a Level^b of an FFR is recommended to termediate elated ш В 399,405 identify hemodynamically out FFR < 0.80 399,401, ed. relevant coronary lesion(s) A 405 when evidence of ischaemia is not available.

Recommendations

FFR is recommended to identify hemodynamically

not available.

stress test.

lesions.

Revascularization of

IVUS or OCT may be considered to characterize

relevant coronary lesion(s)

stenoses with FFR <0.80 is recommended in patients with

angina symptoms or a positive

when evidence of ischaemia is

Ref. C

399,401,

405

400

404,406

Class^a

llb

Level^b

Α

в

В

Windecker S. ESC/EACTS myocardial revascularization guidelines 2014. Eur Heart J 2014; 35 :2541–

FFR in clinical practice

Non-invasive estimates of Fractional Flow Reserve

- Is current imaging good enough to evaluate flow ?
- Computational fluid dynamics has been applied to multislice computed tomography (MSCT) for the computation of FFR, showing good diagnostic performances
- Invasive quantitative coronary angiography (QCA)-based computational FFR was also reported with promising results
- Alternative to pressure wire based assessment

Quantitative Flow Ratio analysis

QFR is computed from:

lumen contours in two standard angiographic projections
contrast flow velocity estimated by frame count during baseline conditions

QFR by MedisSuite, Medis medical imaging. CE-marked. Not approved for clinical use in the US.

The Favor II Study

Aarhus University Hospital (DK)

Observational

•Paired acquisition of FFR and computation of QFR

- •Site specific protocol for effective blinding
- •Strict protocol for QFR

310 patients, 11 hospitals in Europe and Japan From March 2017 to October 2017

Procedural endpoints

Sensitivity and specificity of **QFR compared to two-dimensional QCA** in assessing functional stenosis relevance **with FFR as reference standard**

Others : Procedural safety, Procedure time to FFR, Procedure time to QFR,

FAVOR II E-J

Participating sites

1. Department of Cardiology, Aarhus University Hospital, Skejby, Denmark Dr. Niels R. Holm, Jelmer Westra, Omeed Neghabat, Prof. Hans Erik Bøtker, Dr. Evald Hø Christiansen 2. Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy Dr. Gianluca Campo, Dr. Matteo Tebaldi The Department of Cardiovascular Medicine; Gifu Heart Center, Gifu City, Japan Dr. Hitoshi Matsuo, Dr. Toru Tanigaki Department of Cardiology, Medical University of Warsaw, Warszawa, Poland Dr. Lukasz Koltowski, Dr. Janusz Kochman Department of Cardiology, Hagaziekenhuis, The Hague, The Netherlands Dr. Tommy Liu, Dr. Samer Somi 6. Federico II University of Naples, Naples, Italy Dr. Luigi Di Serafino, Dr. Giovanni Esposito Azienda Ospedaliera Sant'Anna e San Sebastiano, Caserta, Italy Dr. Domenico Di Girolamo, Dr. Guseppe Mercone 8. Department of Cardiology, Hospital Clinico San Carlos, Madrid, Spain Prof. Javier Escaned, Dr. Hernán Mejía-Rentería Department of Cardiology, University Clinic Giessen & Marburg, Giessen, Germany ۹. Prof. Holger Nef 10. Klinik für Kardiologie und Angiologie, Essen, Germany Dr. Christoph Naber 11. Cardiovascular Department, Ospedale dell'Angelo, Mestre-Venezia, Italy Dr. Marco Barbierato, Dr. Federico Ronco

Inclusion criteria & Angiographic inclusion criteria

Inclusion criteria

- Stable angina pectoris or secondary evaluation of stenosis after acute MI
- Age > 18 years

Exclusion criteria

- Myocardial infarction within 72 hours, Severe heart failure (NYHA≥III),
- Allergy to contrast media or adenosine, Atrial fibrillation

Angiographic inclusion criteria

- Indication for FFR in at least one stenosis:
- Diameter stenosis of 30%-90% by visual estimate
- Reference vessel size > 2 mm in stenotic segment by visual estimate

Recommended projection angles for specific lesion segments. Angulation of more than 25° between projections is required.

Vessel /Bifurcation	1st View	2nd View
LM + LAD/LCX	RAO 20, Caudal 45	AP, Caudal 10
LAD/Diag	AP, Cranial 45	RAO 35, Cranial 20
LCX/OM	LAO 10, Caudal 25	RAO 25, Caudal 25
Proximal+Mid RCA	LAO 45, CAUD 0	AP, CAUD 0
PLA/PDA	LAO 45, CAUD 0	LAO 30, CAUD 30

TIPS AND TRICKS (interesting for radiographers !)

- Inject I.C. nitro-glycerine as early as possible
- Make sure that the catheter is filled with contrast before the injection
- Use continuous and fast contrast injections. Aim for full 3 cardiac cycles
- Minimize overlap of target segments
- Avoid foreshortening of the vessel
- Avoid zooming
- Avoid moving the table early after injection
- Make sure that the entire vessel is visible in both projections.

Clinical case

Single vessel 01 (QAngio XA 3D 1.1 #2) - Research only / not for clinical use

Calibration Factor:	0.2247 mm/pixel	
Source:	Isocenter calibration	

Calibration Factor: Source:

2D Image

3D Reconstruction: LAO 14, CAU 16

0.2461 mm/pixel Isocenter calibration

2D Image

Diameter Diagram

Lesion Results

Diameter stenosis	51.7	%
Lesion length	63.0	mm
Proximal diameter	4.5 - 4.5	mm
Distal diameter	2.5 - 3.1	mm
MLD	1.7	mm
Area Stenosis	70.4	%
Bending angle	9	0
Reference volume	646.5	mm ³
Plaque volume	109.9	mm ³
Lumen volume	582.8	mm ³

Optimal Viewing Angles

LAO 51, CRA 18 17.0 % LAO 39, CRA 8 11.5 % LAO 29, CAU 2 6.4 % LAO 18, CAU 13 2.7 % LAO 14, CAU 16 1.9 %

3D Reconstruction with QFR

QFR Results

	Fixed Flow	Contrast
Vessel QFR	0.81	0.78
Lesion QFR	0.82	0.79
Index QFR	0.81	0.78

Diameter and QFR Diagrams

Clinical case 2

- D.D male, 53y.o RCA STEMI 4 days ago, now candidate for LAD evaluation / revascularisation
- LAD stenosis around 60% by visual estimate -> Favour II

FAVOR II patient-adapted Flowchart

FFR

QCA

2D Image

Lesion Results

Diameter stenosis	65.1	%
Lesion length	19.8	mm
Proximal diameter	2.8 - 2.8	mm
Distal diameter	2.5 - 2.7	mm
MLD	1.0	mm
Reference diameter	2.8	mm
Area Stenosis	73.7	%
Bending angle	28	0
Mean vessel bending angle	15	0
Maximum vessel bending angle	35	0
Mean lesion bending angle	22	0
Maximum lesion bending angle	35	0
Reference volume	117.2	mm³
Plaque volume	60.2	mm³
Lumen volume	58.9	mm ³

QFR

Medis Suite 2.1 Report

3D Reconstruction: RAO 27, CRA 27

Diameter Diagram

Medis Suite 2.1 Report

Diameter and QFR Diagrams

PCI

Double DES placed on proximal – middle LAD, kissing baloon on LAD – D1

Study Results

QFR had **higher sensitivity** (88 percent vs. 46 percent, P<0.001) and specificity (88 percent vs. 77 percent, P<0.001) compared to 2D-QCA.

Key secondary endpoints of feasibility of QFR was 97 % (N=373)

Time to QFR was 4.8 minutes , compared to 7 minutes for FFR, P<0.001.

Randomized trials are required to determine if a QFR based diagnostic strategy provides non-inferior clinical outcome compared to pressure wire based strategies -> FAVOR III

Conclusions

- New tools for evaluating Coronary anatomy are available
- Functional evaluation is increasing in account with a lot of different features also in association with imaging
- FAVOR III \rightarrow radiological data inserted
- Radiographers: a key role in cath lab
 - Quality Imaging features
 - Participating in study
 - Patient Safety
 - It's a team work !

Grazie per l'attenzione!

andrea.maschera@unipd.it & migliorinimatteo@gmail.com